WYNIKI

z realizacji zadania na rzecz postępu biologicznego w produkcji roślinnej w 2017 roku Poszukiwanie wspólnych mechanizmów dziedziczenia płodności roślin z cytoplazmą CMS - C oraz z cytoplazmą CMS-Pampa

Temat badawczy 1

Precyzyjne określenie na mapach genetycznych lokalizacji głównych genów restorerowych dla obu systemów CMS, identyfikacja genów pobocznych, porównanie lokalizacji.

Wyniki (opisać)

Oceną płodności objęto łącznie 400 roślin odmian mieszańcowych żyta. Najmniej licznie reprezentowana była odmiana Stach F1 – 24 genotypy poddane ocenie. U mieszańca Picasso F1 fenotypowa ocena została wykonana dla 42 roślin, a 86 ze Skaltio F1. Ostatnie dwie badane odmiany (Konto F1 i Bono F1) liczyły powyżej 100 osobników. Zastosowano dwie metody oceny płodności, które dały bardzo wysoce skorelowane rezultaty (tab.1)

W każdej z odmian obecne były rośliny w pełni męskosterylne (klasy 1-3 w skali Geigera i Morgensterna) i częściowo płodne (klasy 4-6). Roślin w pełni męskopłodnych (klasy 7-9) nie zidentyfikowano w 2017 roku u odmiany Konto F1 (tab.2). U pozostałych odmian rośliny rośliny należące do tej kategorii były obecne, ale ze zróżnicowaną częstotliwością (tab.3).

Tabela	1	Współczynniki	korelacji	pomiędzy	wynikami	wzrokowej	oceny	pylenia	roślin	а	oceną
zawiązywania ziaren pod izolatorami											

Nazwa odmiany	Współczynnik korelacji
Picasso F1	0,73
Stach F1	0,85
Skaltio F1	0,80
Konto F1	0,70
Bono F1	0,64

Tabela	2	Wyniki	oceny	wzrokowej	pylenia	roślin	odmian	mieszańcowych	(wg	skali	Geigera	i
Morgens	ste	rna)										

Odmiana	Mę	skoster	ylne	Częś	ciowo p	łodne	Me	skopło	dne	Suma
	1	2	3	4	5	6	7	8	9	
Picasso F1	0	3	5	11	8	7	1	0	7	42
Stach F1	0	1	7	7	3	2	3	1	0	24
Skaltio F1	1	11	46	19	5	0	3	0	1	86
Konto F1	0	6	77	20	10	5	0	0	0	118
Bono F1	0	5	31	19	10	7	6	16	36	130
Ogółem	1	26	166	76	36	21	13	17	44	400

Około 17% badanej grupy roślin z odmiany Stach F1 wykazywało objawy męskiej płodności (tab.3), ale nie było wśród nich żadnej rośliny ocenionej w skali Geigera i Morgensterna na 9 (tab.2). Odmiana Picasso F1 charakteryzowała się zbliżoną do Stach F1 frekwencją roślin męskopłodnych (tab.3), z tą różnicą, że były to głównie rośliny wykazujące bardzo silne objawy płodności (tab.2). Najlepsze przywrócenie płodności zaobserwowano u odmiany Bono F1 – ponad 44% roślin męskopłodnych, wśród których większość był zaliczana do klasy fenotypowej roślin najsilniej pylących.

Tabela 3 Procentowy udział roślin męskosterylnych, częściowo płodnych i męskopłodnych w badanych odmianach mieszańcowych żyta.

Odmiana	Męskosterylne	Częściowo płodne	Męskopłodne
Picasso F1	19,05	61,90	19,05
Stach F1	33,33	50,00	16,67
Skaltio F1	67,44	27,91	4,65
Konto F1	70,34	29,66	0,00
Bono F1	27,69	27,69	44,62

Trzy odmiany mieszańcowe żyta: Bono F1, Palazzo F1, Skaltio F1 poddano analizom genotypowym. Na podstawie charakterystyk odmian podanych przez firmy hodowlane oraz własnych obserwacji z lat 2016 i 2017, przyjęto założenie, że dwie pierwsze posiadają główny gen restorerowy Rfp1, a ostatnia zawiera wyłącznie geny poboczne.

Analizy DArTseq dostarczyły informacji o 96380 markerach DArTseq dla każdej z trzech badanych odmian. Uzyskane dane użyto do scharakteryzowania struktury badanych populacji, co stanowi wstępną analizę przy mapowaniu asocjacyjnym. Analizy zmienności wewnątrzodmianowej przeprowadzone w programie NTSYS wskazują na brak wyraźnego zróżnicowania o charakterze strukturalnym. Wskaźniki podobieństwa genetycznego w obrębie odmiany Bono F1 mieściły się w granicach 0,83-0,95 a utworzony dendrogram (ryc.1) nie wskazuje na istnienie odrębnych genetycznie większych grup genotypów. Bardzo zbliżony zakres zmienności genetycznej odnotowano dla Palazzo F1. Dla najbardziej odmiennych genetycznie osobników pochodzących z tej odmiany oszacowano wskaźniki podobieństwa genetycznego na 0,8 a wartość podobieństwa niektórych roślin osiagneła poziom maksymalny - 1,0 (ryc.2). W odmianie Palazzo F1 również nie zaobserwowano zróżnicowania o charakterze strukturanym. Trzecia z analizowanych odmian mieszańcowych to Skaltio F1. Wartości współczynników podobieństwa genetycznego w obrębie tej odmiany nie różniły się znaczaco od tego co odnotowano dla odmian Bono F1 i Palazzo F1. Najniższa wartość wskaźnika podobieństwa jaką zaobserwowano to 0,79, wartość maksymalna to 1,0 (ryc.3). Trzy rośliny (Skaltio 072, 115 i 117) różniły się dość znacznie od większości badanych genotypów (ryc.3), ale było ich zbyt mało, aby stwierdzić, że w odmianie Skaltio F1 istnieje zróżnicowanie o charakterze strukturalnym.

Prace nad mapowaniem sprzężeniowym skoncentrowano w 2017 roku na poszukiwaniach pobocznych genów kontrolujących płodność w cytoplazmie C. Wszystkie wytypowane i użyte do analiz genetycznych rośliny wykazywały stosunkowo słabe objawy męskiej płodności – były klasyfikowane jako częściowo płodne.

Wśród użytych markerów tylko jeden ujawniał polimorfizm między liniami rodzicielskimi mieszańca różnicując jednocześnie badane próby zbiorcze DNA roślin sterylnych i płodnych. Był to marker COS o nazwie cX92 (ryc.4)

Ryc.1 Dendrogram podobieństwa genetycznego roślin z odmiany Bono F1 skonstruowany metodą UPGMA

Ryc.2 Dendrogram podobieństwa genetycznego roślin z odmiany Palazzo F1 skonstruowany metodą UPGMA

Ryc.3 Dendrogram podobieństwa genetycznego roślin z odmiany Skaltio F1 skonstruowany metodą UPGMA

Ryc. 4. Wyniki analiz BSA z użyciem markera cX92

Marker cX92 użyto do analiz pojedynczych osobników badanej populacji mapującej mieszańca [544C x Ot0-20] (ryc.5). Uzyskane wyniki po połączeniu z danymi fenotypowymi pozwoliły na wstępne określenie odległości genetycznej pomiędzy badanym markerem a poszukiwanym genem Rfc2. Odległość ta wynosi ponad 14cM.

Ryc.5 Segregacja markera cX92 w populacji mapującej mieszańca [544C x Ot0-20]

Temat badawczy 2

Identyfikacja mitochondrialnych czynników wywołujących męską sterylność w cytoplazmie Pampa i porównanie ich z genetycznymi determinantami warunkującymi męską niepłodność w cytoplazmie CMS-C.

Wyniki

Analizy PCR pozwalające na weryfikację poprawności wyników analiz bioinformatycznych zainicjowano w 2016 roku uzyskując wstępnie wyniki w pełni zgodne z oczekiwaniami na obszarze ok. 6Kb. Kontynuacja prac, w wyniku których weryfikacją objęto kolejne ok. 60Kb genomu mitochondrialnego ujawniła szereg niezgodności (tab.4). We wszystkich przypadkach analiz zestawionych w tabeli 4 nie uzyskano żadnych produktów amplifikacji, co uniemożliwiło weryfikację niezgodności na drodze dodatkowych sekwencjonowań.

	abela 4. Zestawienie analiz PCR wskazujących na brak zgodności sekwencji DNA kontigów	z
fizyczną	ekwencją mtDNA.	

Analiza (kontig)	Pozycja startera F	Pozycja startera R	Diugose tragmentu
	(nt)	(nt)	mtDNA
			zweryfikowanego
			negatywnie
Contig 1C_04	32213	33196	1858 nt
Contig 1C_04	33107	34071	
Contig 1C_05	37590	38545	955 nt
Contig 1C_05	43503	44485	982 nt
Contig 1C_06	58111	59068	1831 nt
Contig 1C_06	58989	59942	
Contig 1C_07	62472	63426	954 nt
Contig 1C_07	64109	65080	971 nt

W niemal wszystkich przypadkach, gdy amplifikacja produktów zachodziła zgodnie z oczekiwaniami, nie obserwowano różnic między badanymi cytoplazmami żyta (ryc.7). Jedynym wyjątkiem był produkt PCR o nazwie c40992 (ryc.7). Startery do amplifikacji tego produktu zaprojektowano w oparciu o kontig złożony z fragmentów sekwencji cytoplazmy CMS-C, a jego oczekiwana długość wynosiła 967nt. Produkt PCR o tej długści uzyskano, ale tylko przy obecności DNA linii 541C. W cytoplazmach N i CMS-Pampa produkty PCR również powstawały, ale miały wielkość około 700nt (wielkość oszacowano w oparciu o drabinkę fragmentów DNA – Wz).

Analizy PCR tego produktu w obrębie różnych linii żyta (ryc.8) wskazują, że c40992 występuje w oczekiwanej wielkości produktu u genotypów żyta posiadających cytoplazmę Vavilovii (do tego typu należą źródła CMS-C i CMS-G). Produkt o identycznej wielkości pojawił się też w próbach z DNA dzikiego żyta górskiego (*Secale montanum*), ale nie było go w *Secale vavilovii*, ani w dwóch próbach z pszenżytem i pszenicą (ryc.8).

Ryc.7. Produkty amplifikacji otrzymane dla różnych cytoplazm żyta w analizach PCR wykorzystujących startery zaprojektowane w oparciu o sekwencje otrzymanych najdłuższych kontigów.

Ryc.8. Polimorfizm mtDNA w liniach żyta ujawniony w wyniku amplifikacji produktu PCR c40992.

Asemblacja i adnotacja mtDNA linii 541N

W wyniku asemblacji program NOVOPlasty złożył odczyty sekwencyjne tej linii w 51 kontigów. Rozmiar najdłuższego kontigu wynosił 95 267 bp, natomiast najkrótszego – 487 bp. Na podstawie uzyskanych kontigów program złożył 98 alternatywnych wersji genomu mitochondrialnego (tab. 5). Rozmiar najdłuższego złożenia wynosił 219 339 bp, natomiast najkrótszego – 86 455 bp.

Tabela 5. Długości złożeń genomu mitochondrialnego linii 541N.

Długość [bp]	219339, 214069, 213036, 211818, 211026, 210483, 209265, 208473, 206917, 204364, 201711,
	200493, 200313, 199701, 197940, 197872, 197623, 197148, 196831, 195592, 194114, 193068,
	193039, 192658, 192276, 191947, 191866, 191561, 190186, 189699, 189394, 189310, 188959,
	188518, 188167, 186757, 186298, 185965, 185506, 185201, 184409, 184345, 183553, 182789,
	182648, 182178, 181856, 181792, 181743, 181386, 181000, 180951, 180541, 179625, 178833,
	178069, 177985, 177193, 176842, 175432, 175364, 174640, 173197, 173084, 173020, 172228,
	171323, 170853, 170560, 170531, 170467, 170061, 169768, 169675, 168300, 167508, 166451,
	165659, 165595, 164803, 164039, 163428, 162636, 159235, 158443, 154334, 154270, 153478,
	152103, 151311, 130849, 122689, 119524, 112128, 108341, 97780, 97016, 86455

Do dalszych analiz wybrano złożenie najdłuższe oraz najdłuższe (214 069 bp) spośród czterech złożeń zawierających sekwencje genów *cox3*, *rpl5*, *cob*, *rrn26-p*, *orf173* oraz *nad7* – nieobecnych w największym złożeniu.

W wyniku adnotacji, spośród 59 genów mitochondrialnych występujących u pszenicy, 40 odnaleziono w obrębie wybranych złożeń linii 541N (tab. 6). Nie udało się zadnotować łącznie 19 genów – nad2, trnA, rpl16, rps3, trnY, orf349, rps2, trnD, cox2, rps12, nad3, trnS-1, trnS-3, trnF, trnS-2, rps19-p, trnN, trnI oraz trnM. Spośród tej puli pięciu genów – trnA, trnS-1, trnS-2, trnS-3 oraz trnF – nie wykryto nie tylko w obrębie wybranych złożeń, ale również w żadnym spośród 51 wygenerowanych kontigów.

Tabela 6. Lista sekwencji kodujących (genów bądź ich fragmentów) zadnotowanych w obrębie wybranych złożeń genomu mitochondrialnego linii 541N.

Rozmiar złożenia [bp]	Sekwencje kodujące
219 339	atp1, atp9, nad1, rps13, atp6, trnE, nad5, matR, rps1, ccmFN, trnC, ccmFC, orf359, nad4, ccmC, trnK, ccmB, atp4, nad9, cox1, trnQ, rps4, nad6, rpl2-p, trnfM, rrn18, trnP, mttB, atp8, rrn26, rps7, rrn5, nad4L, trnW
214 069	atp1, atp9, nad1, rps13, cox3, rpl5, nad5, matR, rps1, ccmFN, cob, nad4, rrn26-p, orf173, nad9, cox1, nad6, rpl2-p, trnfM, rrn18, trnP, mttB, atp8, rrn26, rps7, rrn5, nad7, nad4L

Spośród zidentyfikowanych sekwencji kodujących 27 stanowiły kompletne geny niepodzielone, z których 6 występowało w dwóch różnych lokalizacjach w obrębie danego złożenia (tab. 7, ryc. 9).

Tabela 7. Lista genów niepodzielonych zadnotowanych w obrębie wybranych złożeń genomu mitochondrialnego linii 541N z zaznaczeniem liczby kopii.

Złożenia									
	[bp]								
2	219 339	214 069							
Gen	Liczba kopii	Gen	Liczba kopii						
atp1	1	atp1	1						
atp4	1	atp8	1						
atp9	1	atp9	1						
ccmB	1	ccmFN	1						
ccmFN	1	cox1	1						
matR	1	cox3	1						
mttB	1	matR	1						
rpl2-p	1	mttB	1						
rps1	1	rpl2-p	1						
rps13	1	rpl5	1						
rps4	2	rps1	1						
rps7	1	rps13	1						
rrn18	2	rps7	2						
rrn5	2	rrn18	1						
trnC	1	rrn26	1						
trnE	1	rrn26-p	1						
trnfM	2	rrn5	1						
trnK	1	trnfM	1						
trnP	1	trnP	1						
trnQ	2								
trnW	1								

Adnotacja wykazała obecność trzech kompletnych genów podzielonych. Nie stwierdzono występowania tych genów w więcej niż jednej lokalizacji danego złożenia (tab. 8, ryc. 9).

	Złożenia [bp]							
219 339				214 069				
Gen	Liczba fragmentów (egzonów)	Liczba kopii	Gen	Liczba fragmentów (egzonów)	Liczba kopii			
ccmFc	2	1	nad1	5	1			
nad1	5	1	nad6	2	1			
nad6	2	1						

Tabela 8. Lista genów podzielonych zadnotowanych w obrębie wybranych złożeń genomu mitochondrialnego linii 541N z zaznaczeniem liczby kopii.

Ryc. 9. Graficzna prezentacja wybranych złożeń genomu mitochondrialnego linii 541N. Kolorem niebieskim oznaczono geny kodujące białka, kolorem zielonym – geny kodujące rRNA, kolorem czerwonym – geny kodujące tRNA. W centralnej części ryciny znacznikami taśmowymi wyróżniono zduplikowane sekwencje kodujące.

Asemblacja i adnotacja mtDNA linii 541C

W wyniku asemblacji program NOVOPlasty złożył odczyty sekwencyjne tej linii w 33 kontigi. Rozmiar najdłuższego kontigu wynosił 72 753 bp, natomiast najkrótszego – 374 bp. Na podstawie uzyskanych kontigów program złożył 65 alternatywnych wersji genomu mitochondrialnego (tab. 9). Najdłuższe złożenie genomu wynosiło 405 527 bp, natomiast najkrótsze – 110 612 bp.

Tabela 9. Długości złożeń genomu mitochondrialnego linii 541C.

	<u> </u>		
Długość [bp]	405527, 404404, 404404,	, 404404, 382523, 381365, 381365, 381365, 381321, 374900, 372291	Ι,
	372258, 368286, 364841,	, 355262, 354277, 354104, 354099, 351861, 351817, 350832, 350654	ŀ,
	349219, 346232, 345074,	, 345069, 344303, 342787, 341624, 341596, 335833, 321958, 321264	ŀ,
	318557, 318513, 312928,	3, 312794, 309483, 306329, 296270, 285533, 283290, 282261, 282088	3,
	282083, 276503, 273058,	, 273053, 273025, 256029, 249986, 246999, 245970, 241958, 238513	3,
	222725, 221987, 218919,	, 215474, 213695, 212957, 169942, 146903, 119642, 110612	

Najdłuższe złożenie zostało otrzymane z 17 kontigów. Miało ono postać jednej dużej cząsteczki o wielkości 356 996 bp oraz dwóch mniejszych o długościach wynoszących 12 050 oraz 36 481 bp.

W wyniku adnotacji, spośród 59 genów mitochondrialnych występujących u pszenicy, 53 odnaleziono w obrębie złożonych cząsteczek żyta (tab. 10). Nie udało się zadnotować łącznie 6 genów – *rpl2-p*, *trnF*, *trnS-3*, *trnW*, *rpl5* oraz *trnA*. Spośród tej puli geny *rpl5* oraz *trnA* nie występują nie tylko w obrębie wybranego złożenia, ale również w żadnym spośród 33 wygenerowanych kontigów.

Tabela 10. Lista sekwencji kodujących (genów bądź ich fragmentów) zadnotowanych w obrębie najdłuższego złożenia genomu mitochondrialnego linii 541C.

Rozmiar złożenia [bp]	Sekwencje kodujące
356 996	nad2, nad1, rps13, atp6, trnE, cox3, nad5, matR, rps1, ccmFN, cob, rpl16, rps3, trnC, ccmFC, orf359, nad4, ccmC, rrn26-p, ccmB, atp4, orf173, trnY, nad9, orf349, rps2, trnD, cox2, trnQ, rps4, nad6, trnfM, rrn18, atp8, rps12, nad3, trnS-1, rrn26, rps7, rrn5, trnS-2, nad7, nad4L, rps19-p, trnN, trnI, trnM
36 481	atp1, atp9, nad1, cob, trnK, cox1, trnP, mttB, atp8
12 050	nad2, trnY, nad9, orf349, rps2, trnD

Spośród zidentyfikowanych sekwencji kodujących 39 stanowiły kompletne geny niepodzielone, z których 11 występowało w co najmniej dwóch różnych lokalizacjach w obrębie najdłuższej cząsteczki (tab. 11, ryc. 10).

Tabela 11. Lista genów niepodzielonych zadnotowanych w obrębie najdłuższego złożenia genomu mitochondrialnego linii 541C z zaznaczeniem liczby kopii.

	J J	Z	liożenia [bp]			
3:	56 996		36 481	12 050		
Gen	Liczba kopii	Gen	Liczba kopii	Gen	Liczba kopii	
atp4	1	coxl	1	nad9	1	
ccmB	1	atp1	1	orf349	1	
ccmC	2	atp8	1	rps2	1	
ccmFN	1	atp9	1	trnD	1	
cox3	1	mttB	1	trnY	1	
matR	1	trnK	1			
nad3	3	trnP	1			
nad4L	1			1		
nad9	1					
orf173	1					
orf349	1					
rpl16	2					
rps1	1					
rps12	3					
rps19-p	1					
rps2	1					
rps4	3					
rps7	1					
rrn18	3					
rrn26	1					
rrn26-p	1					
rrn5	3					
trnC	1					
trnD	2					
trnE	1					
trnfM	5					
trnI	1					
trnM	1					
trnN	3					
trnQ	1					
trnS-1	2					
trnS-2	1					
trnY	1					

Adnotacja najdłuższej cząsteczki wykazała obecność pięciu kompletnych genów podzielonych. Spośród nich jeden – rps3 – występował w dwóch różnych lokalizacjach w obrębie tej cząsteczki. Kopie tego genu różniły się jednak liczbą fragmentów składowych (tab. 12, ryc. 7).

Tabela12. Lista genów podzielonychzadnotowanych w obrębie dużej cząsteczkinajdłuższego złożenia genomu mitochondrialnegolinii 541C z zaznaczeniem liczby kopii.

Gen	Gen Liczba fragmentów (egzonów)				
ccmFC	2	1			
nad4	4	1			
nad7	5	1			
cox2	2	1			
rnc3	3	2			
rps5	4	2			

Ryc. 10. Graficzna prezentacja najdłuższego złożenia genomu mitochondrialnego linii 541C. Kolorem niebieskim oznaczono geny kodujące białka, kolorem zielonym – geny kodujące rRNA, kolorem czerwonym – geny kodujące tRNA. W centralnej części ryciny znacznikami taśmowymi wyróżniono zduplikowane sekwencje kodujące.

Asemblacja i adnotacja mtDNA linii 541P

Program NOVOPlasty złożył odczyty sekwencyjne tej linii w 49 kontigów. Rozmiar najdłuższego kontigu wynosił 54 097 bp, natomiast najkrótszego – 316 bp. Na podstawie uzyskanych kontigów program złożył 64 alternatywne wersje genomu mitochondrialnego (tab. 13). Spośród otrzymanych złożeń trzy największe miały tę samą długość wynoszącą 355 735 bp. Najkrótsze złożenie miało rozmiar 28 095 bp.

Tabela 15. Diugosci ziozen genomu initochondinanego initi 541F.								
	355735, 355735, 355735, 355513, 355513, 355513, 340812, 340812, 340812, 340791, 340791,							
	322066, 322066, 322066, 322045, 322045, 307230, 307230, 307230, 307209, 307209, 296164,							
Długość	288484, 288484, 288484, 288463, 288463, 283390, 283168, 277418, 270548, 270326, 268467,							
[bp]	268417, 268417, 268396, 262582, 255604, 249721, 243836, 238763, 238541, 236858, 234885,							
	223819, 223769, 222022, 216139, 214455, 214455, 214434, 205073, 203276, 198203, 197981,							
	190237, 183209, 171491, 169807, 153555, 153333, 129247, 89368, 28095							

Tabela 13. Długości złożeń genomu mitochondrialnego linii 541P.

Spośród trzech najdłuższych złożeń dwa składały się z tych samych kontigów, ale połączonych ze sobą w różnej konfiguracji. Trzecie złożenie miało nieco odmienny skład kontigów i zostało wybrane do dalszych analiz. Dodatkowo, analizom poddano złożenie o długości 205 073 bp, które posiadało najmniejszą liczbę genów wspólnych z wybranym najdłuższym złożeniem oraz dodatkowo posiadało gen *rpl2-p*, którego obecności nie stwierdzono w najdłuższym złożeniu.

W wyniku adnotacji, spośród 59 genów mitochondrialnych występujących u pszenicy, 50 zostało zidentyfikowanych w obrębie wybranych złożeń linii 541P (tab. 14). Nie udało się zadnotować łącznie dziewięciu genów – *rpl5, trnA, trnK, trnF, trnS-3, nad4L, trnW, rps19-p* oraz *trnN.* Spośród tej puli siedmiu genów – *rpl5, trnA, trnK, trnF, trnS-3, nad4L* oraz *trnW* – nie wykryto nie tylko w obrębie wybranych złożeń, ale również w żadnym spośród 49 wygenerowanych kontigów.

Tabela 14. Lista	a sekwencji	kodujących	(genów	bądź ich	fragmentów)	zadnotowanych	w obrębie	wybranych
złożeń genomu n	nitochondria	ulnego linii 54	41P.					

Rozmiar złożenia [bp]	Sekwencje kodujące
355 735	<i>nad2</i> , <i>atp1</i> , <i>atp9</i> , <i>nad1</i> , <i>rps13</i> , <i>atp6</i> , <i>trnE</i> , <i>cox3</i> , <i>nad5</i> , <i>matR</i> , <i>rps1</i> , <i>ccmFN</i> , <i>cob</i> , <i>rpl16</i> , <i>rps3</i> , <i>trnC</i> , <i>ccmFC</i> , <i>orf359</i> , <i>nad4</i> , <i>ccmC</i> , <i>rrn26-p</i> , <i>ccmB</i> , <i>atp4</i> , <i>orf173</i> , <i>trnY</i> , <i>nad9</i> , <i>orf349</i> , <i>rps2</i> , <i>trnD</i> , <i>cox2</i> , <i>cox1</i> , <i>trnQ</i> , <i>rps4</i> , <i>nad6</i> , <i>trnfM</i> , <i>rrn18</i> , <i>trnP</i> , <i>mttB</i> , <i>atp8</i> , <i>rps12</i> , <i>nad3</i> , <i>trnS-1</i> , <i>rrn26</i> , <i>rps7</i> , <i>rrn5</i> , <i>trnS-2</i> , <i>nad7</i> , <i>trnI</i> , <i>trnM</i>
205 073	atp1, atp9, nad1, atp6, nad5, matR, rps1, ccmFN, cob, ccmC, ccmB, atp4, orf173, cox2, trnQ, rps4, nad6, rpl2-p, trnfM, rrn18, trnP, mttB, rps12, nad3, trnS-1, rrn26, rrn5

Spośród zidentyfikowanych sekwencji kodujących 38 stanowiły kompletne geny niepodzielone, z których 13 występowało w co najmniej dwóch różnych lokalizacjach danego złożenia (tab. 15, ryc. 8).

Tabela 15. Lista genów niepodzielonych zadnotowanych w obrębie wybranych złożeń genomu mitochondrialnego linii 541P z zaznaczeniem liczby kopii.

Złożenia [bp]										
3	55 735	205 073								
Gen	Liczba kopii	Gen	Liczba kopii							
atp1	1	atp1	1							
atp4	1	atp4	1							
atp9	1	atp9	1							
ccmB	1	ccmB	1							
ccmC	2	ccmC	2							
ccmFN	1	ccmFN	1							
cox1	1	matR	1							
cox3	1	mttB	1							
matR	1	nad3	1							
mttB	1	nad6	1							
nad3	2	rpl2-p	1							
nad9	2	rps1	1							
orf173	1	rps12	1							
orf349	2	rps4	2							
rpl16	1	rrn18	3							
rps1	1	rrn5	3							
rps12	2	trnfM	3							
rps13	1	trnP	1							
rps2	2	trnQ	1							
rps4	2	trnS-1	1							
rps7	1									
rrn18	3									
rrn26	1									
rrn26-p	1									
rrn5	3									
trnC	2									
trnD	2									
trnE	2									
trnfM	4									
trnI	1									
trnM	1									
trnP	1									
trnQ	1									
trnS-1	1									
trnS-2	1									
trnY	1]								

Adnotacja wykazała także obecność pięciu kompletnych genów podzielonych. Spośród nich jeden – ccmFC – występował w dwóch różnych lokalizacjach w obrębie najdłuższego złożenia (tab. 16, ryc. 11).

Tabela 16. Lista genów podzielonych zadnotowanych w obrębie wybranych złożeń genomu mitochondrialnego linii 541P z zaznaczeniem liczby kopii.

Złożenia [bp]										
	355 735		205 073							
Gen	Liczba fragmentów (egzonów)	Liczba kopii	Gen	Liczba fragmentów (egzonów)	Liczba kopii					
ccmFC	2	2	nad5	4	1					
rps3	4	1								
nad7	5	1								
cox2	2	1								

Ryc. 11. Graficzna prezentacja wybranych złożeń genomu mitochondrialnego linii 541P. Kolorem niebieskim oznaczono geny kodujące białka, kolorem zielonym – geny kodujące rRNA, kolorem czerwonym – geny kodujące tRNA. W centralnej części ryciny znacznikami taśmowymi wyróżniono zduplikowane sekwencje kodujące.

Identyfikacja SNPów różnicujących mtDNA poszczególnych cytoplazm

W badanym zestawie linii udało się zidentyfikować łącznie 28 SNPów, spośród których 15 znajdowało się w miejscach rozpoznawanych przez enzymy restrykcyjne (tab. 17). Wszystkie otrzymane markery SNP różnicowały linię 541P w stosunku do linii 541N i 541C, pomiędzy którymi nie wykryto punktowych różnic sekwencyjnych.

Tabela 17. Zidentyfikowane polimorfizmy pojedynczego nukleotydu (SNP). "+" – obecność SNPu w miejscu rozpoznawanym przez enzym restrykcyjny.

	Wariant dla				
Identyfikator*	541N	541C	541P	Możliwość konwersji w marker CAPS	Różnicujące enzymy restrykcyjne
541C1_17606	Т	Т	С	_	_
541C1_58974	С	С	Т	+	Aeul, AglI, AhaI, AjnI, AorI, ApaORI, ApyI, AseII, AsuC2I, BciBII, BcnI, Bco27I, BfII, BptI, BsaOI, Bsc107I, Bsc4I, Bse16I, Bse17I, Bse24I, BseBI, BseLI, BseX3I, Bsh1285I, BshGI, BsiEI, BsiLI, BsiSI, BsiYI, BsII, BspNI, Bst100I, Bst1I, Bst2I, Bst2UI, Bst38I, Bst40I, BstM6I, BstMCI, BstNI, BstOI, BstZI, BsuFI, BthDI, BthEI, CauII, CboI, CbrI, CthII, EagI, EclXI, Eco1831I, Eco52I, EcoHI, EcoRII, Fsp1604I, HapII, HgiS22I, Hin2I, HpaII, Kpn49kII, McrI, Mg114481I, MnoI, MspI, MvaI, NciI, Pde137I, Psp6I, PspGI, SenPT16I, SleI, SniI, SsII, SspAI, Sth117I, Sth134I, TaqXI, XmaIII, ZanI
541C1_65730	TC	TC	GA	—	—
541C1_65916	CGAGTCT	CGAGTCT	AGACTCG	—	-
541C1_70049	G	G	Т	+	DraI, MseI, SruI
541C1_71386	А	А	С	+	Hpy188I
541C1_72205	Т	Т	G	+	CviRI, HpyCH4V, HpyF44III
541C1_123735	А	А	С	+	AcsI, ApoI, FsiI, MseI, Tru1I, Tru9I, XapI
541C1_124365	Т	Т	A	-	-
541C1_140153	Т	Т	G	+	MseI, Tru1I, Tru9I
541C1_208114	G	G	А	-	-
541C1_208126	G	G	Т	-	-
541C1_208141	Т	Т	С	+	BstDEI, BstJZ301I, DdeI
541C1_208147	А	А	G	-	-
541C1_208168	G	G	А	_	-
541C1_208180	GGATAA	GGATAA	ATTTAG	+	AcsI, ApoI, FsiI, Sse9I, TasI, Tsp509I, TspEI, XapI
541C1_208204	G	G	Т	_	-
541C1_208231	G	G	А	-	-
541C1_208237	A	А	G	+	AcrII, AspAI, Bse64I, BseT10I, BseT9I, BsiKI, BstEII, BstPI, BstT10I, BstT9I, EcaI, Eci125I, Eco91I, EcoO128I, EcoO65I, MaeIII, NspSAII, PspEI,
541C1_208246	А	А	Т	+	CviRI, HpyCH4V, HpyF44III
541C1_208280	G	G	Т	+	BanAI, BecAII, Bfi89I, Bim19II, Bme361I, BseQI, BshFI, BshI, Bsp211I,

					BspANI, BspBRI, BspKI, BspRI, BsuRI, BteI, CfrI, CltI, CviJI, CviTI, DsaII, EaeI, EcoHK31I, EsaBC4I, FnuDI, HaeIII, MchAII, MfoAI, NgoPII, NspLKI, PalI, Pde133I, PfIKI, PhoI, PlaI, SbvI, SfaI, SuaI
541C1_208296	СТ	СТ	AA	+	AcsI, ApoI, Asp700I, BbvAI, FsiI, MroXI, MseI, PdmI, Tru1I, Tru9I, XapI, XmnI
541C1_208304	Т	Т	С	+	BfI, FoI, FspBI, MeI, MhZI, RmI, XspI
541C1_208486	GA	GA	G	_	_
541C1_208492	А	А	G	_	_
541C1_232928	Т	Т	G	+	HaeIV
541C1_248112	А	А	G	+	Bca77I, Bco27I, BetI, BsaWI, BsiSI, Bst40I, BsuFI, CboI, HapII, Hin2I, HpaII, MnoI, MspI, Pde137I, Sth134I
541C1_289135	С	С	А	-	-

* wskazujący pozycję danego SNPu w sekwencji referencyjnej

Temat badawczy 3

Określenie frekwencji alleli płodności dla cytoplazmy C i P w populacjach żyta ozimego.

Wyniki

W roku 2017 oceniono męską płodność 1068 roślin mieszańcowych pochodzących z zapylenia męskosterylnych wersji linii 541 z cytoplazmami C i P pyłkiem pochodzącym z europejskich populacji żyta. W przybliżeniu połowę przebadanych osobników stanowiły rośliny z cytoplazmą Pampa i CMS-C (tab. 18). Rośliny wykazujące objawy bardzo głębokiej sterylności (1 w skali Gegera i Morgensterna) nie pojawiały się, gdy obecna była cytoplazma C, natomiast zidentyfikowano 8 takich roślin z cytoplazmą Pampa (pojedyncze rośliny obecne były w każdej z pięciu badanych populacji).

Mieszańce z cytoplazmą Pampa, niezależnie od pochodzenia populacji zapylającej, charakteryzowały się bardzo dużym udziałem roślin męskosterylnych ocenianych w skali Geigera i Morgensterna na 2-3. Udział roślin męskosterylnych w mieszańcach z cytoplazmą Pampa mieścił się w granicach od około 80% (polska populacja Szk.104) do ponad 95% (polska populacja Szk.101 i Landsorte K9538 wywodząca się z byłej Jugosławii) (tab.19). Frekwencja roślin męskopłodnych (oceny 7-9 w skali Geigera i Morgensterna) u mieszańców z cytoplazmą Pampa była na bardzo niskim poziomie – od 0 do 2,5%, z wyjątkiem mieszańców z populacją Szk.104, ale tutaj również odnotowana wartość nie osiągnęła 10%. Mieszańce z cytoplazmą C charakteryzowały się we wszystkich badanych kombinacjach krzyżowań dominującym udziałem roślin męskopłodnych (tab.9), ale z jednym wyjątkiem: udział roślin męskopłodnych w mieszańcach linii 541C z jugosłowiańską populacją Landsorte K9538 wynosił około 40%. W przypadku tego mieszańca grupa roślin męskopłodnych wciąż była najliczniejsza wśród trzech klas fenotypowych (MS, CP i MP), ale mniej niż połowa roślin należała do tej kategorii (tab.19). Rośliny częściowo płodne (CP), tj. klasyfikowane w zakresie od 4 do 6 w skali Geigera i Morgensterna, stanowiły najmniej liczną kategorię fenotypową, niezależnie od rodzaju cytoplazmy sterylizującej.

Tabela 18 Płodność mieszańców między męskosterylnymi źródłami cytoplazm CMS-P i CMS-C, a polskimi populacjami żyta ozimego (liczebność roślin w poszczególnych klasach fenotypowych).

Populacja CMS Męskosterylne Częściowo płodne Męskopłodne Suma	-						/
]	Populacja	CMS	Męskosterylne	Częściowo płodne	Męskopłodne	Suma

		1	2	3	4	5	6	7	8	9	
Hungarian Giant (HUN)	С	0	0	4	3	1	1	1	3	62	75
Landsorte K9538 (YUG)	С	0	2	31	16	3	3	6	8	23	92
Szk. 15/15	С	0	1	16	4	3	2	2	5	78	111
Szk.101	С	0	1	25	5	7	4	6	8	67	123
Szk.104	С	0	0	27	5	3	0	3	10	62	110
Vjatka (SU)	С	0	1	11	1	3	2	2	1	45	66
Hungarian Giant (HUN)	Р	1	14	50	8	3	0	0	0	0	76
Landsorte K9538 (YUG)	Р	3	24	48	2	0	0	0	0	1	78
Szk.101	Р	2	30	87	4	1	0	0	1	0	125
Szk.104	Р	1	25	79	12	2	0	0	6	7	132
Vjatka (SU)	Р	1	18	53	5	1	0	0	1	1	80
Ogółem		8	116	431	65	27	12	20	43	346	1068
w tym z	CMS-C	0	5	114	34	20	12	20	35	337	577
w tym z	CMS-P	8	111	317	31	7	0	0	8	9	491

Tabela 19 Odsetek roślin ocenionych jako męskosterylne (MS), częściowo płodne (CP) i męskopłodne (MP) wśród mieszańców między męskosterylnymi wersjami linii 541, a populacjami żyta.

Populacja	Cytoplazma	MS	СР	MP
Hungarian Giant				
(HUN)	С	5.33	6.67	88.00
Landsorte K9538				
(YUG)	С	35.87	23.91	40.22
Szk. 15/15	С	15.32	8.11	76.58
Szk.101	С	21.14	13.01	65.85
Szk.104	С	24.55	7.27	68.18
Vjatka (SU)	С	18.18	9.09	72.73
Hungarian Giant				
(HUN)	Р	85.53	14.47	0.00
Landsorte K9538				
(YUG)	Р	96.15	2.56	1.28
Szk.101	Р	95.20	4.00	0.80
Szk.104	Р	79.55	10.61	9.85
Vjatka (SU)	Р	90.00	7.50	2.50
Ogółem	С	20.62	11.44	67.94
	Р	88.80	7.74	3.46

Temat badawczy 4

Ocena zdolności kombinacyjnej linii męskosterylnych z cytoplazmą C na tle linii zawierających cytoplazmę Pampa.

Wyniki

Wszystkie badane w 2017 roku linie dawały mieszańce plonujące wyraźnie gorzej niż odmiany wzorcowe (tab.20). Warunki pogodowe w ostatnim sezonie wegetacyjnym były szczególnie korzystne dla odmiany KWS-Binnto F1, która plonowała o kilkanaście procent lepiej niż wszystkie pozostałe badane obiekty doświadczalne włącznie z drugą odmianą wzorcową – Stakatto F1. Mieszańce eksperymentalne z udziałem trzech linii męskosterylnych z cytoplazmą C należały do najsłabiej plonujących. Najgorsze wyniki dała linia ZUT_15_0820_P. Pozostałe dwie też należały do słabo ponujących, ale uwzględniając statystyczną istotność otrzymanych wyników plonowania, można je zakwalifikować do licznej grupy linii charakteryzujących się przeciętną wartością kombinacyjną.

Pod względem pozostałych badanych w doświadczeniu cech użytkowych mieszańce z cytoplazmą C ocenione zostały na poziomie zbliżonym do tych, w których formy mateczne zawierały cytoplazmę Pampa. Wyniki oceny wysokości roślin, wylegania i porażenia przez rdzę brunatną dla mieszańców z cytoplazmą C oscylowały wokół wartości średnich dla wszystkich obiektów doświadczenia. Odmiany wzorcowe charkateryzowały się (poza wyższym plonowaniem) trochę mniejszą podatnością na porażenie przez rdzę, nieznacznie niższą wysokością, ale nieco większą skłonnością do wylegania.

Tabela 20 Średni plon ziarna oraz inne cechy użytkowe mieszańców F1 zaobserwowane w
doświadczeniu z mieszańcami żyta założonym metodą wzorcową w trzech miejscowościach.
Pogrubioną czcionką zaznaczono mieszańce z CMS-C, kursywą odmiany wzorcowe.

Lp.	Nazwa mieszańca	Plon (kg/pol.)	Plon	Rdza brunatna	Wysokość [cm]	Wyleganie
			[% wz.]			
1	KWS-BINNTTO	5,08	107,69	5,52	139,78	8,08
2	STAKATTO	4,36	92,31	4,87	139,71	6,98
3	NS_281P/15	4,32	91,58	4,82	145,57	8,01
4	753B/15	4,29	90,96	5,02	140,17	8,47
5	826B/15	4,28	90,78	5,33	141,56	8,33
6	NS_275P/15	4,28	90,74	4,71	147,28	9,14
7	NS_223P/15	4,28	90,67	5,18	149,95	7,65
8	NS_235P/15	4,26	90,25	4,65	142,75	7,40
9	NS_225P/15	4,25	89,99	4,61	142,21	8,47
10	NS_214P/15	4,20	89,11	4,87	145,50	8,25
11	NS_234P/15	4,19	88,72	4,44	141,09	8,67
12	906B/15	4,18	88,68	4,77	149,42	7,44
13	NS_195P/15	4,14	87,75	4,48	138,71	7,75
14	NS_267P/15	4,09	86,70	4,59	144,26	8,34
15	NS_71P/15	4,08	86,55	5,22	148,76	7,92
16	NS_151P/15	4,08	86,52	4,71	146,79	8,46
17	800B/15	4,07	86,20	5,83	140,97	7,80
18	NS_95P/15	4,06	86,02	4,72	141,54	8,19
19	NS_104P/15	4,02	85,29	4,80	144,83	8,66
20	NS_271P/15	4,01	85,08	4,92	145,08	8,34
21	NS_226P/15	4,00	84,73	4,91	140,62	8,13
22	776B/15	3,95	83,73	4,73	143,27	8,90
23	ZUT_15_0798_P	3,95	83,67	5,14	146,61	8,09
24	NS_121P/15	3,93	83,37	4,96	144,62	8,75
25	NS_371P/15	3,86	81,89	5,31	145,04	7,73
26	NS_319P/15	3,82	80,90	4,95	145,88	8,40
27	NS_93P/15	3,81	80,85	4,75	144,61	7,70
28	ZUT_15_0774_P	3,77	79,81	4,88	145,08	8,30
29	NS_92P/15	3,69	78,11	4,95	145,60	7,75
30	NS_210P/15	3,68	78,00	4,91	139,05	8,26
31	732B/15	3,51	74,31	4,66	143,04	7,75
32	ZUT_15_0820_P	3,23	68,54	4,64	142,57	8,61
	Średnia ogólna	4,05		4,90	144,03	8,15
Śre	dnia dla wzorców	4,72		5,20	139,74	7,53

Opublikowane streszczenia:

Sobczyk M., Orłowska M., Stojałowski S., 2017. Pylenie roślin z wybranych odmian mieszańcowych żyta. XIII Ogólnopolska Konferencja Naukowa "Nauka dla Hodowli i Nasiennictwa Roślin Uprawnych" – Streszczenia, Zakopane, 30 stycznia - 3 lutego 2017, ISBN 83-891172-87-9: 292

Sobczyk M., Stojałowski S. IDENTIFICATION OF ADDITIONAL RESTORER GENES IN THE MAPPING POPULATION [544C x MOt]BC1, Biologia, Chemia i Środowisko – spojrzenie młodych naukowców", Kraków 9 grudnia 2017 – Streszczenia wystąpień, s. 73

Poster: Sobczyk M., Orłowska M., Stojałowski S., 2017. Pylenie roślin z wybranych odmian mieszańcowych żyta. XIII Ogólnopolska Konferencja Naukowa "Nauka dla Hodowli i Nasiennictwa Roślin Uprawnych", 30 stycznia - 3 lutego 2017:

Pylenie roślin w wybranych odmianach mieszańcowych żyta

<u>Martyna Sobczyk</u>, Marta Orłowska, Stefan Stojałowski Zachodniopomorski Uniwersytet Technologiczny w Szczecinie martyna sobczyk@zut.edu.pl

Wstęp

Większość zarejestrowanych odmian mieszańcowych żyta jest opartych o system cytoplazmatycznej męskiej sterylności (CMS) typu Pampa. Europejskie zasoby genowe żyta nie posiadały form skutecznie przywracających płodność. Populacja IRAN IX pochodząca z Bliskiego Wschodu została użyta w komercyjnej hodowli jako źródło genów przywracających płodność (restorerów). Rezultatem tych prac są odmiany mieszańcowe o intensywnym pyleniu, np. odmiany KWS "Pollen Plus".

Cel

Celem prowadzonych doświadczeń było porównanie efektywności pylenia mieszańców żyta zawierających i tych, które nie zawierają genów restorerowych pochodzących z populacji IRAN IX.

Palazzo F1

3 4 5

Materiał i Metody

W doświadczeniu polowym przeprowadzonym w Szczecinie oceniono pylenie pojedynków pochodzących z 4 odmian mieszańcowych: Palazzo F1, Visello F1, Konto F1 i Skaltio F1. Dwie pierwsze odmiany posiadały oznaczenie "Pollen Plus" (powinny zawierać gen restorerowy z populacji IRAN IX) u pozostałych tego genu nie należało oczekiwać.

Wyniki

W odmianie Palazzo F1 (tab. 1-2, rys. 1) 40% roślin była silnie pyląca, natomiast w odmianie Visello F1 (tab. 1-2, rys. 2) 60% roślin stanowiły osobniki męskopłodne. U pozostałych dwóch badanych odmian rośliny silnie pylące stanowiły około 10% badanej populacji (rys. 3-4). U wszystkich badanych odmian występowała znacząca grupa roślin męskosterylnych. Ich obecność nie musi mieć negatywnego wpływu na zawiązywanie ziaren i porażenie przez sporysz, ale odróżnia odmiany mieszańcowe żyta od odmian populacyjnych. Zastosowano dwie metody oceny płodności, które dały bardzo wysoce skorelowane rezultaty (tab. 3).

	Oumana		IVIĘSKOSLETY	ine	C2	ęsciowo pioc	ne		Infeskopioui	ie	Suma	
		1	2	3	4	5	6	7	8	9		
the second second	Palazzo F1	0	1	30	16	9	4	2	2	36	100	
	Visello F1	0	4	23	12	11	6	3	6	85	150	
	Konto F1	0	1	32	24	16	10	7	4	6	100	
	Skaltio E1	0	1	17	15	5	2	1	4	5	50	
	Skaluo F1				10		100 C	100 C				
t. Procentowy udzi	Ogółem ał roślin męskosterylnych, częś	0 ciowo płodnych	7 i męskopłodnyc	102	67	41	22	13 Tabela 3. V	16 Vspółczynniki ko	132 prelacji pomiędzy	400 wynikami wzroko pod izplatorami	wej oceny
t. Procentowy udzi nych odmianach m	Ogółem ał roślin męskosterylnych, częś ieszańcowych żyta	0 ciowo płodnych	7 i męskopłodnyc	17 102	67	41	22	13 Tabela 3. V pylenia roś	16 Vspółczynniki ko lin a oceną zaw	132 prelacji pomiędzy iązywania ziaren	400 wynikami wzroko pod izolatorami	wej oceny
t. Procentowy udzi nych odmianach mi Odmiana	Ogółem ał roślin męskosterylnych, częś ieszańcowych żyta Męskosterylne	0 ciowo płodnych Częściowo	7 i męskopłodnyc	h Męskopłod	67 dne	41	22	13 Tabela 3. V pylenia roś	16 Vspółczynniki ko ilin a oceną zaw Nazwa od	132 Intelacji pomiędzy nazywania ziaren Imiany	400 wynikami wzroko pod izolatorami Współc	wej oceny zynnik ko
Procentowy udzi nych odmianach mi Odmiana Palazzo F1	Ogółem ał roślin męskosterylnych, częś eszańcowych żyta Męskosterylne 31	0 ciowo płodnych Częściowo 25	7 i męskopłodnyc o płodne	h Męskopłor 40	dne	41	22	13 Tabela 3. W pylenia roś	16 Vspółczynniki ko lin a oceną zaw Nazwa od Palazzo	132 prelacji pomiędzy iązywania ziaren miany p F1	400 wynikami wzroko pod izolatorami Współc	zynnik ko 0,94
2. Procentowy udzi nych odmianach mi Odmiana Palazzo F1 Visello F1	Ogółem ał roślin męskosterylnych, częś ieszańcowych żyta Męskosterylne 31 18	Częściowo Częściowo 25	7 7 i męskopłodnyc o płodne	102 h Męskopłow 40 63	67 dne	41	22	13 Tabela 3. V pylenia ros	16 Vspöłczynniki ko ilin a oceną zaw Nazwa od Palazzc Visello	132 prelacji pomiędzy fiązywania ziaren miany p F1 F1	400 wynikami wzroko pod izolatorami Współc	wej oceny zynnik ko 0,94 0,81
2. Procentowy udzi nych odmianach mi Odmiana Yalazzo F1 Visello F1 Konto F1	dirollin meikosterylinych, częś ał roślin meikosterylinych, częś Męskosteryline 31 18 33	Ciowo płodnych Częściowa 25 15	7 7 p płodne)	17 102 Męskopłou 40 63 17	dne	41	22	13 Tabela 3. W pylenia ros	16 Vspöłczynniki ko lin a oceną zaw Nazwa od Palazzc Visello Konto	132 arelacji pomiędzy miany p F1 F1 F1	400 wynikami wzroko pod izolatorami Współc	wej oceny zynnik ka 0,94 0,81 0,79